

The AIDAL Project

Towards Formal Argumentation for Legal Reasoning

Jean-Guy Mailly 04/10/2024

Université Toulouse Capitole, IRIT

1. Background: A (Very) Short Survey of Formal Argumentation

2. Towards Argument-based Legal Reasoning

Background: A (Very) Short Survey of Formal Argumentation

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments
- Example:
 - *a*₁: (John) "I'm hungry, let's go to this restaurant."
 - a₂: (Yoko) "I've seen on Tripadvisor that the food is bad, let's go somewhere else."
 - a₃: (John) "These grades are old, and there's a new chef, so it should be better now."
 - a4: (John) "Moreover, the other restaurants in the streets are closed."

 $F = \langle A, R \rangle \text{ with}$ $A = \{a_1, a_2, a_3, a_4\},$ $R = \{(a_2, a_1), (a_3, a_2), (a_4, a_2)\}$ $(a_1) \leftarrow (a_2) \leftarrow (a_3)$ $(a_4) \leftarrow (a_3)$

P. M. Dung: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments
- Example:
 - *a*₁: (John) "I'm hungry, let's go to this restaurant."
 - a₂: (Yoko) "I've seen on Tripadvisor that the food is bad, let's go somewhere else."
 - a₃: (John) "These grades are old, and there's a new chef, so it should be better now."
 - a4: (John) "Moreover, the other restaurants in the streets are closed."

 $F = \langle A, R \rangle \text{ with}$ $A = \{a_1, a_2, a_3, a_4\},$ $R = \{(a_2, a_1), (a_3, a_2), (a_4, a_2)\}$ $a_1 \leftarrow a_2 \leftarrow a_3$

P. M. Dung: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments
- Example:
 - *a*₁: (John) "I'm hungry, let's go to this restaurant."
 - a₂: (Yoko) "I've seen on Tripadvisor that the food is bad, let's go somewhere else."
 - a₃: (John) "These grades are old, and there's a new chef, so it should be better now."
 - a4: (John) "Moreover, the other restaurants in the streets are closed."

 $F = \langle A, R \rangle \text{ with}$ $A = \{a_1, a_2, a_3, a_4\},$ $R = \{(a_2, a_1), (a_3, a_2), (a_4, a_2)\}$

P. M. Dung: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments
- Example:
 - *a*₁: (John) "I'm hungry, let's go to this restaurant."
 - a₂: (Yoko) "I've seen on Tripadvisor that the food is bad, let's go somewhere else."
 - a₃: (John) "These grades are old, and there's a new chef, so it should be better now."
 - a4: (John) "Moreover, the other restaurants in the streets are closed."

 $F = \langle A, R \rangle \text{ with}$ $A = \{a_1, a_2, a_3, a_4\},$ $R = \{(a_2, a_1), (a_3, a_2), (a_4, a_2)\}$

 a_4

P. M. Dung: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic

Extension

Given $F = \langle A, R \rangle$, an extension is a set of jointly acceptable arguments

Extension

Given $F = \langle A, R \rangle$, an extension is a set of jointly acceptable arguments

Extension-based Semantics

Given $F = \langle A, R \rangle$, $S \subseteq A$ is

- conflict-free (cf) if there is no $a, b \in S$ s.t. $(a, b) \in R$
- admissible (ad) if $S \in cf(F)$ and S defends all its elements
- stable (st) if $S \in cf(F)$ and S attacks each argument in $A \setminus S$
- complete (co) if $S \in ad(F)$ and S doesn't defend any argument in $A \setminus S$
- preferred (**pr**) if S is \subseteq -maximal in **ad**(F)
- grounded (gr) if S is \subseteq -minimal in co(F)

P. M. Dung: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artif. Intell. 77(2): 321-358 (1995)

Example: Semantics Comparison

Semantics σ	σ -extensions	$cred_{\sigma}$	$skep_{\sigma}$
grounded	$\{\{a_1\}\}$	$\{a_1\}$	$\{a_1\}$
stable	$\{\{a_1, a_4, a_6\}\}$	$\{a_1,a_4,a_6\}$	$\{a_1,a_4,a_6\}$
preferred	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$
complete	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}, \{a_1\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$

- $cred_{\sigma}(F) = \bigcup_{S \in \sigma(F)} S$: credulously accepted arguments
- skep_σ(F) = ∩_{S∈σ(F)}S: skeptically accepted arguments

- a_1 A is guilty
- a2 A is innocent
- a_3 B has a motive and no alibi
- a4 A has an alibi
- a_5 A has a motive

- a_1 A is guilty
- a2 A is innocent
- a_3 B has a motive and no alibi
- a4 A has an alibi
- a_5 A has a motive
- \Rightarrow one extension $\{a_3, a_4, a_5\}$, no information about $a_1, a_2...$

- a_1 A is guilty
- a2 A is innocent
- a_3 B has a motive and no alibi
- a4 A has an alibi
- a_5 A has a motive
- ⇒ one extension $\{a_3, a_4, a_5\}$, no information about $a_1, a_2...$
- ...but a_1 seems weaker than a_2

- a_1 A is guilty
- a2 A is innocent
- a_3 B has a motive and no alibi
- a4 A has an alibi
- a_5 A has a motive
- $\Rightarrow \text{ one extension } \{a_3, a_4, a_5\}, \text{ no information about } a_1, a_2...$
- ...but a_1 seems weaker than a_2
- Gradual semantics: assigns a score in [0, 1] to each argument
- Example: $hcat(a) = \frac{1}{1 + \sum_{(b,a) \in R} hcat(b)}$
- $hcat(a_1) \approx 0.29$, $hcat(a_2) \approx 0.43$
- P. Besnard, A. Hunter: A logic-based theory of deductive arguments. Artif. Intell. 128(1-2): 203-235 (2001)
 C. Cayrol, M.-C. Lagasquie-Schiex: Graduality in Argumentation. J. Artif. Intell. Res. 23: 245-297 (2005)

- Intuitively, a₁ should be stronger than a₂
- Many different interpretations of the notion of support
- Different if we consider extension-based or gradual semantics

Leila Amgoud, Claudette Cayrol, Marie-Christine Lagasquie-Schiex, P. Livet: On bipolarity in argumentation frameworks. Int. J. Intell. Syst. 23(10): 1062-1093 (2008)

Preference-based Argumentation Frameworks

- Additional information about preferences/priorities between arguments
- Example
 - a1 John is innocent because his wife says he was with her at the time of the murder
 - a_2 John is guilty because there is a video of him murdering the victim

Leila Amgoud, Claudette Cayrol: A Reasoning Model Based on the Production of Acceptable Arguments. Ann. Math. Artif. Intell. 34(1-3): 197-215 (2002)

Preference-based Argumentation Frameworks

- Additional information about preferences/priorities between arguments
- Example
 - a1 John is innocent because his wife says he was with her at the time of the murder
 - a_2 John is guilty because there is a video of him murdering the victim
 - \Rightarrow Intuitively, a_2 is preferred to a_1 because the video is more reliable For computing arguments acceptability, the attack that disagrees with the preferences can be "ignored"

Leila Amgoud, Claudette Cayrol: A Reasoning Model Based on the Production of Acceptable Arguments. Ann. Math. Artif. Intell. 34(1-3): 197-215 (2002) $I = \langle A, A^?, R, R^? \rangle$ where

- A, A? are disjoint sets of arguments
- $R, R^?$ are disjoint sets of attacks over $A \cup A^?$

such that

- A, R are certain arguments and attacks
- $A^{?}, R^{?}$ are uncertain arguments and attacks

J.-G. Mailly: Yes, no, maybe, I don't know: Complexity and application of abstract argumentation with incomplete knowledge. Argument Comput. 13(3): 291-324 (2022)

Completions = AFs compatible with the incomplete knowledge encoded in the IAF \simeq possible worlds

- Possible reasoning: some property is true for some completion of the IAF
- Necessary reasoning: some property is true for each completion of the IAF

- Possible reasoning: some property is true for some completion of the IAF
- Necessary reasoning: some property is true for each completion of the IAF

• a_3 is skeptically accepted in each completion \rightarrow necessarily skeptically accepted

- Possible reasoning: some property is true for some completion of the IAF
- Necessary reasoning: some property is true for each completion of the IAF

- a_3 is skeptically accepted in each completion \rightarrow necessarily skeptically accepted
- a_4 is skeptically accepted in some completion \rightarrow possibly skeptically accepted

- Possible reasoning: some property is true for some completion of the IAF
- Necessary reasoning: some property is true for each completion of the IAF

- a_3 is skeptically accepted in each completion \rightarrow necessarily skeptically accepted
- a_4 is skeptically accepted in some completion \rightarrow possibly skeptically accepted
- a_2 is credulously accepted in some completion \rightarrow possibly credulously accepted

- Possible reasoning: some property is true for some completion of the IAF
- Necessary reasoning: some property is true for each completion of the IAF

- a_3 is skeptically accepted in each completion \rightarrow necessarily skeptically accepted
- a_4 is skeptically accepted in some completion \rightarrow possibly skeptically accepted
- a_2 is credulously accepted in some completion \rightarrow possibly credulously accepted
- a_1 is credulously accepted in each completion \rightarrow necessarily credulously accepted
- D. Baumeister, M. Järvisalo, D. Neugebauer, A. Niskanen, J. Rothe: Acceptance in incomplete argumentation frameworks. Artif. Intell. 295: 103470 (2021)

 $\textit{cI} = \langle\textit{A},\textit{A}^{?},\textit{R},\textit{R}^{?},\phi\rangle$ where

- $\langle A, A^?, R, R^? \rangle$ form an incomplete AF
- ϕ is a propositional formula expressing a constraint on "valid" completions

$$\begin{array}{c} \textcircled{a_1} \\ \textcircled{a_2} \\ \textcircled{a_2} \\ \textcircled{a_3} \\ \textcircled{a_3} \\ \textcircled{a_3} \\ \textcircled{a_4} \\ \textcircled{a_5} \\ \textcircled{a_6} \\ \textcircled{a_1,a_2} \\ \end{matrix}$$

 $\textit{cI} = \langle\textit{A},\textit{A}^?,\textit{R},\textit{R}^?,\phi\rangle$ where

- $\langle A, A^?, R, R^? \rangle$ form an incomplete AF
- ϕ is a propositional formula expressing a constraint on "valid" completions

$$\begin{array}{c} \overbrace{a_1} & \overbrace{a_2} & \overbrace{a_3} \\ \hline \end{array} \qquad \phi = (att_{a_1,a_2} \oplus att_{a_3,a_2}) \land arg_{a_3} \\ \hline \end{array}$$

 ϕ means that exactly one of the uncertain attack exists, and a_3 must exist

 $\textit{cI} = \langle\textit{A},\textit{A}^?,\textit{R},\textit{R}^?,\phi\rangle$ where

- $\langle A, A^?, R, R^? \rangle$ form an incomplete AF
- ϕ is a propositional formula expressing a constraint on "valid" completions

$$\begin{array}{c} \overbrace{a_1} & \overbrace{a_2} & \overbrace{a_3} \\ \hline \end{array} \qquad \phi = (att_{a_1,a_2} \oplus att_{a_3,a_2}) \land arg_{a_3} \\ \hline \end{array}$$

 ϕ means that exactly one of the uncertain attack exists, and a_3 must exist

<u>J.-G. Mailly</u>: Constrained Incomplete Argumentation Frameworks. ECSQARU 2021: 103-116 <u>J.-G. Mailly</u>: Constrained Incomplete Argumentation Frameworks: Expressiveness, Complexity and Enforcement. AI Communications, 31(3): 299-322 (2024)

Julien Rossit, Jean-Guy Mailly, Yannis Dimopoulos, Pavlos Moraitis: United we stand: Accruals in strength-based argumentation. Argument Comput. 12(1): 87-113 (2021)

- $StrAF = \langle A, R, s \rangle$, with $s : A \rightarrow \mathbb{N}^+$
- a1 This house is great, let's buy it!
- a_2 It's a bit far from my work, let's not buy it.
- a₃ It doesn't have a swimming pool, let's not buy it.
- a4 It doesn't have air conditioning, let's not buy it.

Julien Rossit, Jean-Guy Mailly, Yannis Dimopoulos, Pavlos Moraitis: United we stand: Accruals in strength-based argumentation. Argument Comput. 12(1): 87-113 (2021)

- Generally speaking, an argument is a (set of) reason(s) for accepting a claim
- Logical formalisms can be used to represent arguments and their relations
 - $a_1 = (\{a, b, a \land b \Rightarrow c\}, c)$
 - $a_2 = (\{d, d \Rightarrow \neg a\}, \neg a)$
 - a2 attacks a1 because its claim negates some premises of a1
- The same kind of intuition (argument = premises supporting a claim) works with natural language arguments
 - a_1 I think there will be rain today, so I will take my umbrella.
 - a_2 I have see the weather forecast yesterday evening, they did not announce rain for today.
 - The claim of a₂ negates the premises of a₁

- Subfield of Natural Language Processing (NLP) interested in argumentation
 - · Identifying which parts of a text are premises, and claims
 - Identifying the (premises, claim) relation that make an argument
 - Identifying the (attacks or supports) relations between arguments

Elena Cabrio, Serena Villata: Five Years of Argument Mining: a Data-driven Analysis. IJCAI 2018: 5427-5433

Towards Argument-based Legal Reasoning

- *a*₁: Red car must let pass on its right side
- *a*₂: Blue car has a "Yield" sign
- a3: Red car also has a "Yield" sign
- *a*₄: Blue car is a police car with flashing lights on

- *a*₁: Red car must let pass on its right side
- *a*₂: Blue car has a "Yield" sign
- a3: Red car also has a "Yield" sign
- *a*₄: Blue car is a police car with flashing lights on

Adaptation to context is important for legal decision making:

• Default case

- *a*₁: Red car must let pass on its right side
- *a*₂: Blue car has a "Yield" sign
- a3: Red car also has a "Yield" sign
- *a*₄: Blue car is a police car with flashing lights on

- Default case
- Exception: "Yield" for blue car

- *a*₁: Red car must let pass on its right side
- *a*₂: Blue car has a "Yield" sign
- a3: Red car also has a "Yield" sign
- *a*₄: Blue car is a police car with flashing lights on

- Default case
- Exception: "Yield" for blue car
- Exception: "Yield" for red car

- *a*₁: Red car must let pass on its right side
- *a*₂: Blue car has a "Yield" sign
- a3: Red car also has a "Yield" sign
- *a*₄: Blue car is a police car with flashing lights on

- Default case
- Exception: "Yield" for blue car
- Exception: "Yield" for red car
- Exception: Blue car is a police car with flashing lights on

- *a*₁: Red must let pass on its right side
- a2: Blue has a "Yield" sign
- a3: Red also has a "Yield" sign
- *a*₄: Blue is a police car with flashing lights on

Context = constraint on completions

- Default case: $\phi = \neg arg_{a_2} \land \neg arg_{a_3} \land \neg arg_{a_4}$
- "Yield" for blue: $\phi = arg_{a_2} \land \neg arg_{a_3} \land \neg arg_{a_4}$
- "Yield" for blue and red: $\phi = arg_{a_2} \wedge arg_{a_3} \wedge \neg arg_{a_4}$
- "Yield" for blue and it is a police car: $\phi = arg_{a_2} \wedge \neg arg_{a_3} \wedge arg_{a_4}$

Arguments Strength in Legal Reasoning

- a₁ John is innocent of murdering Paul.
- *a*₂ There is a witness saying he threatened Paul.
- a₃ If Paul is dead then John inherits Paul's money.
- a4 John's hair was found in the house where Paul was killed.

J. Rossit, J.-G. Mailly, Y. Dimopoulos, P. Moraitis: United we stand: Accruals in strength-based argumentation. Argument Comput. 12(1): 87-113 (2021)

O. Leclerc, E. Vergès. Les modèles de raisonnements probatoires des juges : les inférences mathématiques face à la mise en récit des preuves. Les Cahiers de la justice, 2020, 4, pp.689-704 L. Lopes: Two conceptions of the juror.
In: Hastie R, ed. Inside the Juror: The Psychology of Juror Decision Making. Cambridge Series on Judgment and Decision Making. Cambridge University Press; 1993:255-262.

Arguments Strength in Legal Reasoning

- a₁ John is innocent of murdering Paul.
- *a*₂ There is a witness saying he threatened Paul.
- a₃ If Paul is dead then John inherits Paul's money.
- a4 John's hair was found in the house where Paul was killed.
- Using numbers is probably too "rigid" for this kind of scenario
- Defining a "qualitative" version of StrAFs makes sense to formally represent meter models of jurors reasoning

J. Rossit, J.-G. Mailly, Y. Dimopoulos, P. Moraitis: United we stand: Accruals in strength-based argumentation. Argument Comput. 12(1): 87-113 (2021)

O. Leclerc, E. Vergès. Les modèles de raisonnements probatoires des juges : les inférences mathématiques face à la mise en récit des preuves. Les Cahiers de la justice, 2020, 4, pp.689-704 L. Lopes: Two conceptions of the juror.
In: Hastie R, ed. Inside the Juror: The Psychology of Juror Decision Making. Cambridge Series on Judgment and Decision Making. Cambridge University Press; 1993:255-262.

Is it enough?

Legal reasoning may need more information than arguments and attacks

- Supports
 - Incomplete Bipolar AFs might be useful Marie-Christine Lagasquie-Schiex, Jean-Guy Mailly and Antonio Yuste-Ginel, How to Manage Supports in Incomplete Argumentation, FoIKS 2024
- Probabilities
- Preferences
- Structured arguments
- ...

Is it enough?

Legal reasoning may need more information than arguments and attacks

- Supports
 - Incomplete Bipolar AFs might be useful Marie-Christine Lagasquie-Schiex, Jean-Guy Mailly and Antonio Yuste-Ginel, How to Manage Supports in Incomplete Argumentation, FoIKS 2024
- Probabilities
- Preferences
- Structured arguments
- ...

Legal reasoning may need other forms of acceptability

- Other extension-based semantics
- Gradual semantics
- Something else?

Is it enough?

Legal reasoning may need more information than arguments and attacks

- Supports
 - Incomplete Bipolar AFs might be useful Marie-Christine Lagasquie-Schiex, Jean-Guy Mailly and Antonio Yuste-Ginel, How to Manage Supports in Incomplete Argumentation, FoIKS 2024
- Probabilities
- Preferences
- Structured arguments
- ...

Legal reasoning may need other forms of acceptability

- Other extension-based semantics
- Gradual semantics
- Something else?

Building systems requires argument mining

• From laws, justice decisions,...

Argument-based formal reasoning offers interesting features

- Practical computational approaches
- Explainability of reasoning
 - visual
 - or dialectical

Argument-based formal reasoning offers interesting features

- Practical computational approaches
- Explainability of reasoning
 - visual
 - or dialectical

Why using argumentation for legal reasoning?

- Explaining the law/legal decisions to the layperson
- Guaranteeing the law-compliant behavior of autonomous systems
 - Remember the example of traffic laws and the development of autonomous cars
- Helping lawyers/judges/etc to take decisions
 - Replacing human decision by fully automated decision is **not** the goal

- AIDAL: Artificial Intelligence, Data, Algorithms and Law https://www.irit.fr/aidal/
- Soon: AIDAL mailing list, send me an email if you want to be added jean-guy.mailly@irit.fr

- AIDAL: Artificial Intelligence, Data, Algorithms and Law https://www.irit.fr/aidal/
- Soon: AIDAL mailing list, send me an email if you want to be added jean-guy.mailly@irit.fr

Thanks for your attention!