
CNRS - INP - UT3 - UT1 - UT2J Institut de Recherche en Informatique de Toulouse

How can semantic metadata improve data sharing in Law?

Nathalie Aussenac-Gilles (CNRS) – aussenac@irit.fr

IR

+ collaboraters from MELODI (J. Bouché-Pillon, C. Trojahn dos Santos (UT2J), M. Kamel (U Perpignan), ADRIA (P. Zaraté (UT1C)) and LiLAC (Y. Chevalier (UT3)

- Law produces more and more data in digital form
 - Legal texts, regulations, case reports ...
 - Statistics and figures about cases and law decisions

•.

- Lawyers and law decisions reuse more and more digital data
 - Videos, pictures or text from social media, web sites
 - Data produced by suspects or about suspects
 - Used as supports for investigations, proofs ...
 - Perspectives for prevention of dangerous actions / events
- Law provides regulations and guidance about data accessibility, sharing, processing, ...
 - RGPD, European law about the use of AI
 - Al act

Issues in sharing datasets

- Finding the right dataset for the proper use
- Accessing to this dataset
- Being able to open, manage and operate the dataset
- Actually use the dataset

Issues in sharing datasets: a first analysis: a technical point of view

- Finding the right dataset for the proper use
 - Add metadata, the richer the better
 - Standardize metadata vocabularies and their values
- Accessing to this dataset (how to download it?)
 - Standard protocols
- Being able to open, manage and operate the dataset
 - Use standard and open format to store the datasets
 - Use standard vocabularies to decribe and type the data
- Actually use the dataset
 - Inform about licences and access rights
 - Provide detailed descriptions of the data

The FAIR principles for data sharing

Findable

- F1. (Meta)data are assigned a globally unique and persistent identifier
- F2. Data are described with rich metadata
- F3. Metadata clearly and explicitly include the identifier of the data they describe
- F4. (Meta)data are registered or indexed in a searchable resource

Accessible

- A1. (Meta)data are retrievable by their identifier using a standardized communications protocol
 - A1.1 The protocol is open, free, and universally implementable
 - A1.2 The protocol allows for an authentication and authorization procedure, where necessary
 - A2. Metadata are accessible, even when the data are no longer available

Interoperable

- I1. (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- · I2. (Meta)data use vocabularies that follow FAIR principles
- I3. (Meta)data include qualified references to other (meta)data

Reusable

- R1. Meta(data) are richly described with a plurality of accurate and relevant attributes
 - R1.1. (Meta)data are released with a clear and accessible data usage license
 - R1.2. (Meta)data are associated with detailed provenance
 - R1.3. (Meta)data meet domain-relevant community standards

Wilkinson, M., Dumontier, M., *et al.* (2016). The FAIR Guiding Principles for scientific data management and stewardship. *Scientific data*, 3(1):1–9.

İRIT

How can ontologies and formal vocabularies help?

- Machine readable metadata with identifiers = semantic metadata
- RDF, RDFs and OWL can be used to represent metadata

Findable

- F1. (Meta)data are assigned a globally unique and persistent identifier
- · F2. Data are described with rich metadata
- F3. Metadata clearly and explicitly include the identifier of the data they describe
- F4. (Meta)data are registered or indexed in a searchable resource

Interoperable

I1. (Meta)data use a formal, accessible, shared, and broadly

I2. (Meta)data use vocabularies that follow FAIR principles

applicable language for knowledge representation.

· 13. (Meta)data include gualified references to other

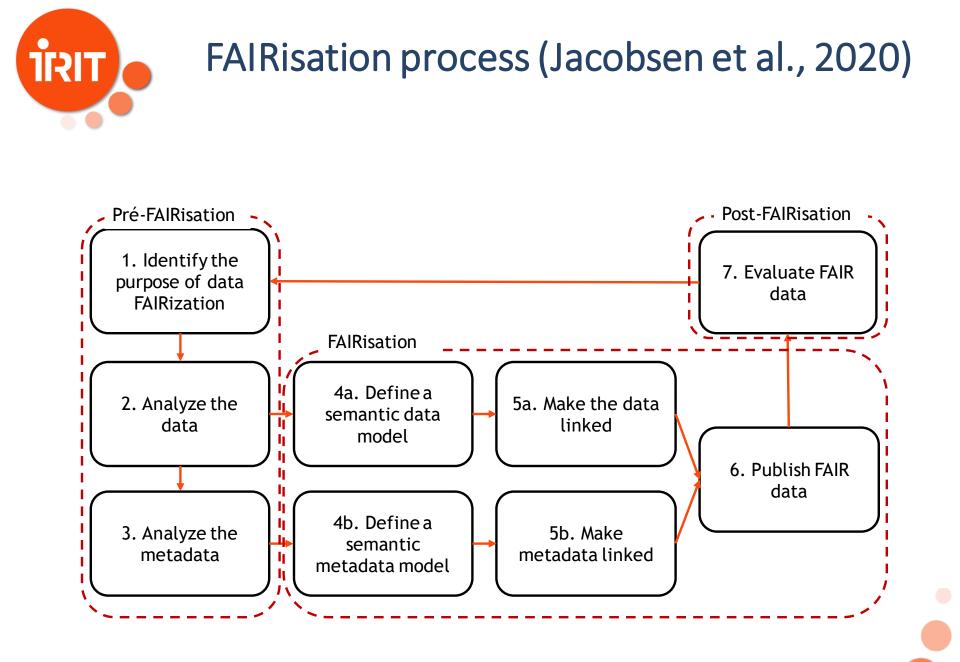
Accessible

- A1. (Meta)data are retrievable by their identifier using a standardized communications protocol
 - A1.1 The protocol is open, free, and universally implementable
 - A1.2 The protocol allows for an authentication and authorization procedure, where necessary
 - A2. Metadata are accessible, even when the data are no longer available

Reusable

- R1. Meta(data) are richly described with a plurality of accurate and relevant attributes
 - R1.1. (Meta)data are released with a clear and accessible data usage license
 - R1.2. (Meta)data are associated with detailed
- RDF, RDFs and OWL are formal, accessible, shared, broadly applicable
- Ontologies are FAIR vocabularies by definition
- Linked Open Data refer to each other

(meta)data


relevant community

How can ontologies and formal vocabularies help?

- Ontologies provide classes to define types of metadata and properties to describe them precisely
- Examples of widely reused ontologies for metadata
 - Dc-term: author, format, version, institution, licence
 - DCAT: catalogue metadata for datasets
 - Prov-o: provenance ontology
 - SSN: sensor data ontology
 - •
- Formal vocabularies and knowledge bases provide formal representations of entities that can used as metadata values
 - Geonames or OpenStreetMap-data for locations
 - Use identifiers for authors (i.e. ORCID for researchers)
 - Use wikidata for famous people, monuments, historical periods, events ...
 - Use medical ontologies for names of diseases, anatomy, ...

• ...

A success story: the BNF dataset

https://data.bnf.fr/semanticweb

- BNF = French National Library
- Each document is described with sematic metadata
- BNF-onto: a unique metadata schema for the entire collection https://data.bnf.fr/ontology/bnf-onto/
- This schema is made of various standard ontologies, vocabularies
 - Dc-term, RDA-registry, Foaf and SKOS
 - DBPedia, GeoNames, Ign, ...
- It is compliant with international library norms
 - IFLA-LRM Library Reference model

National and international initiatives

- RDA working groups
 - INRAE as French leader for the French chapter
- Recherche.Data.gouv
 - French portal for research datasets
- EOSC supported projects
 - Adoption of the CKAN standard
 - FAIRimpact project

• FAIRsFAIR

Some limitations of the FAIR principles

• No reference to law... or proposed

- Each data portal or catalogue can have its own schema
- Web catalogues of datasets that collect metadata from dataset repositories or from other reference catalogues must translate original metadata into their own schema
- No information is asked about the dataset structure and the precise location of each data in the storage
- Very technical view ... but semantics means more
 - Metadata are added by domain experts using domain concepts > which accessibility to non-experts ?
 - Metadata should be rich: definitions in natural language, labels in various languages, ...

- Goals
 - Reduce the gap between data users and data producers
 - Application to the METEO-France data portal
 - Make METEO-France datasets FAIR

Methodology

- Use semantic models
- Reuse existing ontologies and vocabularies
- Build a rich core ontology usable in any domain
- Describe the dataset structure (starting with tabular data)
- Make this ontology adaptable to knowledge domains
- Make it easy to describe datasets with this ontology

Example: the SYNOP dataset

PDF file that explains the content of a table

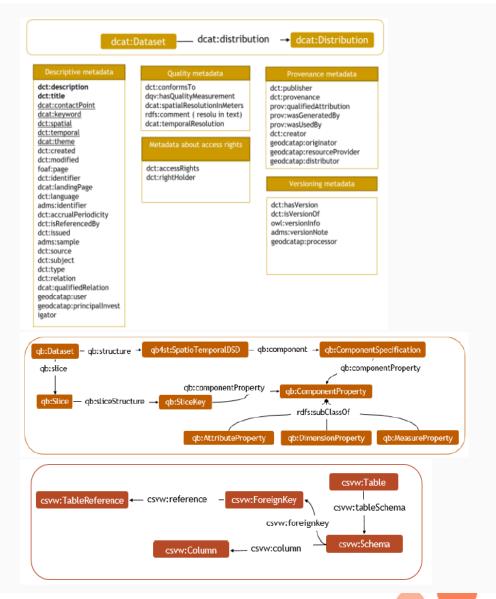
	Descriptif	Mnémonique	type	unité
-	Indicatif OMM station	numer_sta	car	
	Date (UTC)	date	car	AAAAMMDDHHMISS
	Pression au niveau mer	pmer	int	Pa
	Variation de pression en 3 heures	tend	int	Pa
	Type de tendance barométrique	cod_tend	int	<u>code</u> (0200)
	Direction du vent moyen 10 mn	dd	int	degré
	Vitesse du vent moyen 10 mn	ff	réel	m/s
	Température	t	réel	К
	Point de rosée	td	réel	К

numer_sta	date	pmer	ff	t		
7005	20200201000000	100710	3.200000	285.450000		
7015	20200201000000	100710	7.700000	284.950000		Extra
7020	20200201000000	100630	8.400000	284.150000		in th
7027	20200201000000	100770	5.500000	285.650000		

Extract of a table in the dataset

- Technical terms, acronyms, no definition
- No schema provided with the table
- The dataset is not self contained: the pdf file is « somewhere » on the web portal

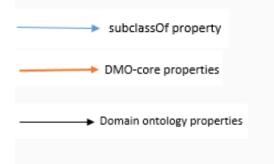
- A core model for representing both descriptive metadata and the internal structure of a dataset.
- Relies on existing FAIR vocabularies and ontologies and is itself compliant with the FAIR principles.
- dmo-core can be instanciated with domain-specific entities and definitions to provide domain understanding for data consumers

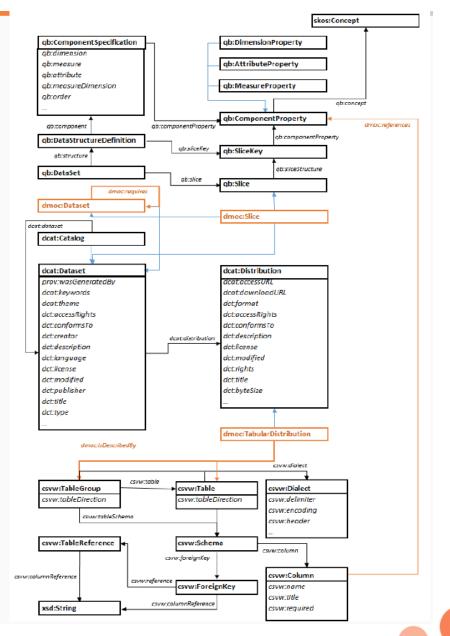

http://w3id.org/dmo

DMO-core: reused ontologies

• DCAT: metadata for dataset documentation

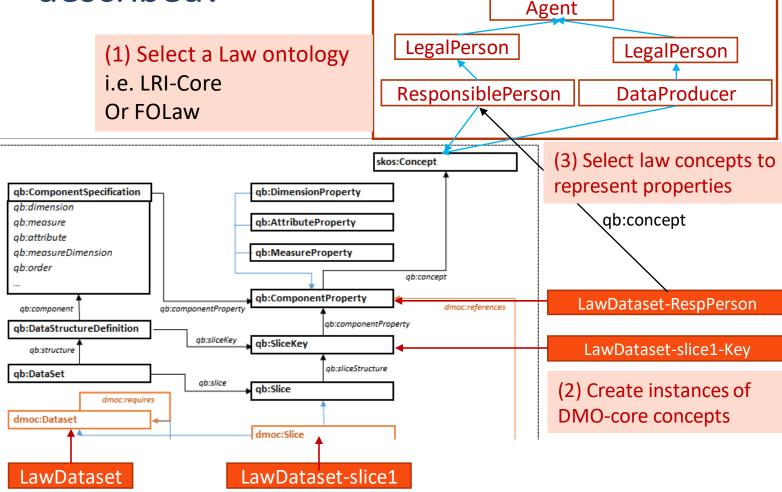
- QB (RDF Data Cube): metadata to describe dataset structure
- CSVW: metadata for table description




The DMO-core ontology

Dmoc main concepts:

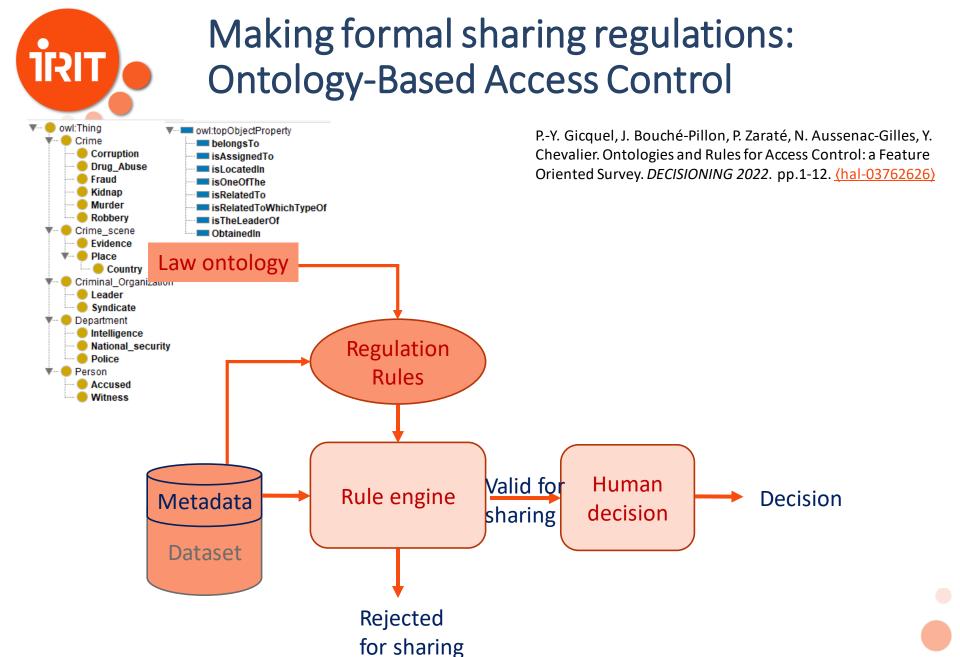
- dmoc:Dataset
 a qb:Dataset,
 - a dcat:Dataset
- dmoc:Slice
 - a qb:Slice, a dmoc:Dataset
- dmoc:TabularDistribution


 a dcat:Distribution

AIDAL - Semantic metadata for data in Law

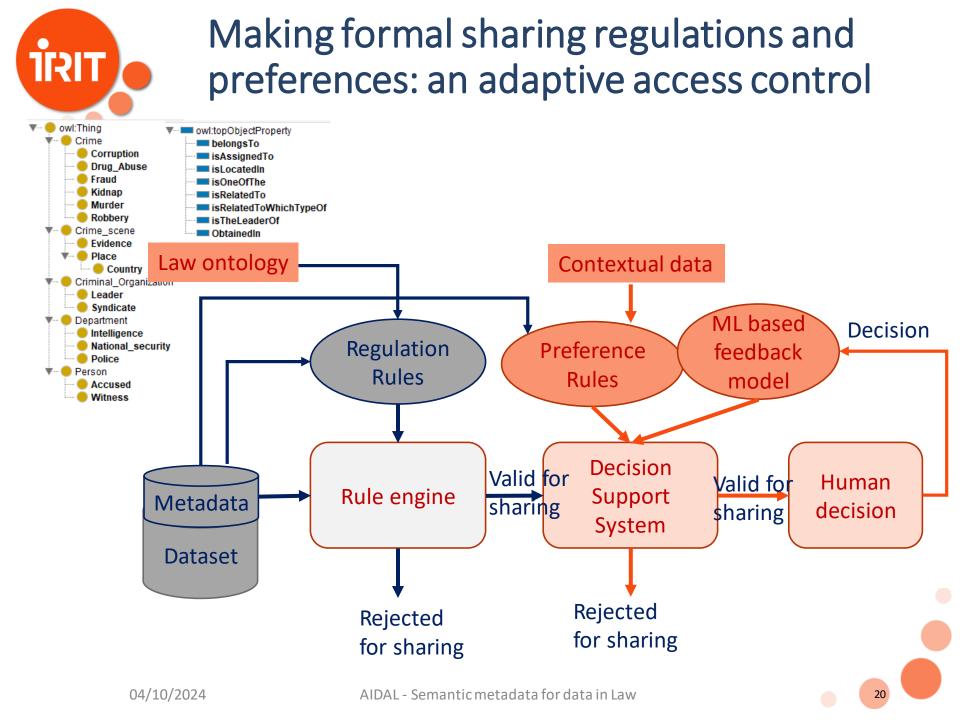
How would a tabular dataset in Law be described?

Engers, Tom & Boer, Alexander & Breuker, Joost & Valente, Andre & Winkels, Radboud. (2008). Ontologies in the Legal Domain. 10.1007/978-0-387-71611-4_13.


ŤIRIT

17

More limitations of the FAIR principles


- Very technical view ... but sharing raises more issues
- No reference to data sharing regulation / law
 - Regulation about personal data RGPD
 - Regulation about data analytics with AI
- No reference to sharing preferences, or particular sharing conditions according to the target user or use conditions
- Making formal law and preferences
 - Formal access control
 - Semantic rules using a law ontology
 - Representation of regulations and law
 - Representation of sharing preferences

04/10/2024

AIDAL - Semantic metadata for data in Law

19

The road is open for new research

- Semantic metada can improve (law) dataset FAIRness
- Law ontologies, formal metadata and decision support systems can help to implement regulations and preferences about data sharing languages
- Investigation lines for the future
 - New types of metadata are required
 - Narrow collaboration between law and AI researchers
 - Build relevant law and context ontologies
 - Integrate case models or user feedback thanks to machine learning
 - Be allowed to access to past decisions

