

Current Trends in Argumentation Dynamics

Jean-Guy Mailly EASSS 2024 - 21/08/2024

Université Toulouse Capitole, IRIT

Who am I? What do I do?

Me, at KR'23 in Rhodes

Toulouse

- 2012-15: PhD in Computer Science
- 2015-16: Postdoc at TU Wien
- 2016-24: Associate Professor at Université Paris Cité
- 2024-...: Junior Professor at Université Toulouse Capitole

- Knowledge representation and reasoning
 - Somewhere between formal logic and computer engineering
- More precisely, argumentation
 - Connections to AAMAS

- Ask questions during the talk
- Ask questions after the talk (jean-guy.mailly@irit.fr)
- Stay in touch :)
 - https://www.linkedin.com/in/jeanguymailly/

https://jgmailly.github.io/assets/pdf/EASSS2024_Mailly.pdf

Table of contents

1. Introduction to Abstract Argumentation

Dung's Framework

SAT-based Computation for Argumentation

What is Argumentation Dynamics?

2. Dynamic Computation

The Subgraph-based Approach

The Iterative SAT-based Approach

3. Extension Enforcement

How to modify arguments acceptability?

Argumentation under Uncertainty

Argumentation Dynamics under Uncertainty

- 4. Application to a Multi-Agent Scenario: Automated Negotiation
- 5. Conclusion

Outline

Introduction to Abstract Argumentation

Dung's Framework

SAT-based Computation for Argumentation

What is Argumentation Dynamics?

Dynamic Computation

The Subgraph-based Approach

The Iterative SAT-based Approach

Extension Enforcement

How to modify arguments acceptability?

Argumentation under Uncertainty

Argumentation Dynamics under Uncertainty

Application to a Multi-Agent Scenario: Automated Negotiation

Conclusion

- Argumentation is an important part of human reasoning
 - Justifying one's own beliefs/decisions
 - Convincing someone else to believe something/do something
 - Analysing conflicting pieces of information
- Formal argumentation in AI studies:
 - Modeling of arguments and their relationships
 - Acceptability of arguments
 - Protocols for several agents using arguments in dialogues
- Two families of formal models
 - Structured/logic-based frameworks
 - Abstract frameworks

- Argumentation is an important part of human reasoning
 - Justifying one's own beliefs/decisions
 - Convincing someone else to believe something/do something
 - Analysing conflicting pieces of information
- Formal argumentation in AI studies:
 - Modeling of arguments and their relationships
 - Acceptability of arguments
 - Protocols for several agents using arguments in dialogues
- Two families of formal models
 - Structured/logic-based frameworks
 - Abstract frameworks

- Argumentation is an important part of human reasoning
 - Justifying one's own beliefs/decisions
 - Convincing someone else to believe something/do something
 - Analysing conflicting pieces of information
- Formal argumentation in AI studies:
 - Modeling of arguments and their relationships
 - Acceptability of arguments
 - Protocols for several agents using arguments in dialogues
- Two families of formal models
 - Structured/logic-based frameworks
 - Abstract frameworks

Dung's Abstract Argumentation Framework

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments

Dung's Abstract Argumentation Framework

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments
- Example:
 - *a*₁: (John) "I'm hungry, let's go to this restaurant."
 - a₂: (Yoko) "I've seen on Tripadvisor that the food is bad, let's go somewhere else."
 - a₃: (John) "These grades are old, and there's a new chef, so it should be better now."
 - a4: (John) "Moreover, the other restaurants in the streets are closed."

$$F = \langle A, R \rangle \text{ with}$$

$$A = \{a_1, a_2, a_3, a_4\},$$

$$R = \{(a_2, a_1), (a_3, a_2), (a_4, a_2)\}$$

$$(a_1) \leftarrow (a_2) \leftarrow (a_3) \leftarrow (a_3)$$

Dung's Abstract Argumentation Framework

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments
- Example:
 - *a*₁: (John) "I'm hungry, let's go to this restaurant."
 - a₂: (Yoko) "I've seen on Tripadvisor that the food is bad, let's go somewhere else."
 - a₃: (John) "These grades are old, and there's a new chef, so it should be better now."
 - a4: (John) "Moreover, the other restaurants in the streets are closed."

$$F = \langle A, R \rangle \text{ with}$$

$$A = \{a_1, a_2, a_3, a_4\},$$

$$R = \{(a_2, a_1), (a_3, a_2), (a_4, a_2)\}$$

$$(a_1) \longleftarrow (a_2) \longleftarrow (a_3)$$

$$(a_4) \bigoplus (a_4)$$

Dung's Abstract Argumentation Framework

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments
- Example:
 - *a*₁: (John) "I'm hungry, let's go to this restaurant."
 - a₂: (Yoko) "I've seen on Tripadvisor that the food is bad, let's go somewhere else."
 - a₃: (John) "These grades are old, and there's a new chef, so it should be better now."
 - a4: (John) "Moreover, the other restaurants in the streets are closed."

$$F = \langle A, R \rangle \text{ with}$$

$$A = \{a_1, a_2, a_3, a_4\},$$

$$R = \{(a_2, a_1), (a_3, a_2), (a_4, a_2)\}$$

Dung's Abstract Argumentation Framework

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments
- Example:
 - *a*₁: (John) "I'm hungry, let's go to this restaurant."
 - a₂: (Yoko) "I've seen on Tripadvisor that the food is bad, let's go somewhere else."
 - a₃: (John) "These grades are old, and there's a new chef, so it should be better now."
 - a4: (John) "Moreover, the other restaurants in the streets are closed."

$$F = \langle A, R \rangle \text{ with}$$

$$A = \{a_1, a_2, a_3, a_4\},$$

$$R = \{(a_2, a_1), (a_3, a_2), (a_4, a_2)\}$$

$$(a_1) \leftarrow (a_2) \leftarrow (a_3)$$

Dung's Abstract Argumentation Framework

Argumentation Framework (AF for short): $F = \langle A, R \rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments
- Example:
 - *a*₁: (John) "I'm hungry, let's go to this restaurant."
 - a₂: (Yoko) "I've seen on Tripadvisor that the food is bad, let's go somewhere else."
 - a₃: (John) "These grades are old, and there's a new chef, so it should be better now."
 - a4: (John) "Moreover, the other restaurants in the streets are closed."

$$F = \langle A, R \rangle \text{ with}$$

$$A = \{a_1, a_2, a_3, a_4\},$$

$$R = \{(a_2, a_1), (a_3, a_2), (a_4, a_2)\}$$

- It doesn't work if there are cycles ightarrow various semantics to remedy this issue

Abstract Argumentation: Semantics

Extension

Given $F = \langle A, R \rangle$, an extension is a set of jointly acceptable arguments

Abstract Argumentation: Semantics

Extension

Given $F = \langle A, R \rangle$, an extension is a set of jointly acceptable arguments

Extension-based Semantics

Given $F = \langle A, R \rangle$, $S \subseteq A$ is

- conflict-free (cf) if there is no $a, b \in S$ s.t. $(a, b) \in R$
- admissible (ad) if $S \in cf(F)$ and S defends all its elements
- stable (st) if $S \in cf(F)$ and S attacks each argument in $A \setminus S$
- complete (co) if $S \in ad(F)$ and S doesn't defend any argument in $A \setminus S$
- preferred (pr) if S is \subseteq -maximal in ad(F)
- grounded (gr) if S is \subseteq -minimal in co(F)

Example: Semantics Comparison

Semantics σ	σ -extensions	$cred_{\sigma}$	$skep_{\sigma}$
grounded	$\{\{a_1\}\}$	$\{a_1\}$	$\{a_1\}$
stable	$\{\{a_1, a_4, a_6\}\}$	$\{a_1, a_4, a_6\}$	$\{a_1,a_4,a_6\}$
preferred	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$
complete	$\{\{a_1, a_4, a_6\}, \{a_1, a_3\}, \{a_1\}\}$	$\{a_1, a_3, a_4, a_6\}$	$\{a_1\}$

- $cred_{\sigma}(F) = \bigcup_{S \in \sigma(F)} S$: credulously accepted arguments
- skep_σ(F) = ∩_{S∈σ(F)}S: skeptically accepted arguments

Labellings

- 3-valued representation of extensions
- Given $F = \langle A, R \rangle$ an AF, and S a σ -extension,
 - $L_S(a) = IN$ iff $a \in S$,
 - $L_S(a) = OUT$ iff $\exists b \in S$ s.t. $(b, a) \in R$,
 - $L_S(a) = UNDEC$ otherwise

Labellings

- 3-valued representation of extensions
- Given $F = \langle A, R \rangle$ an AF, and S a σ -extension,
 - $L_S(a) = IN$ iff $a \in S$,
 - $L_S(a) = OUT$ iff $\exists b \in S$ s.t. $(b, a) \in R$,
 - $L_S(a) = UNDEC$ otherwise

Semantics σ	σ -labellings
grounded	$\{\{a_1, a_2, a_3, a_3, a_5, a_6, a_7\}\}$
stable	$\{\{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}\}$
preferred	$\{\{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}, \{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}\}$
complete	$\{\{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}, \{a_1, a_2, a_3, a_4, a_5, a_6, a_7\},\$
	$\{a_1, a_2, a_3, a_3, a_5, a_6, a_7\}\}$

https://pyarg.npai.science.uu.nl

/isualisation	of abstra	ct argum	nentation fram	ieworks
Abstract Argumentation Fran	mework	^	Default visualisation	Layered visualisation
Generate random	Open exis	ting AF		
Arguments	Attacks			
A	(A,B)			
B	(B,C) (C R)			
-	(B,A)			
			A	вс
Filename edited_at	. JSON V	Download		
Evaluation		~		

Visualisation of abstract argumentation frameworks

Abstract Argumentation Framework		\sim	Default visualisation	Layered visualisation
Evaluation		^		
Semantics Evaluation strategy The extension(s): 0 (8) (A, C) The accepted argument(s): A B C Click on the extension/argument	Complete Credulous	~ ~		
Explanation	e Brahur	\sim		

Visualisation of abstract argumentation frameworks

Abstract Argumentation Framew	ork	\sim	Default visualisation	Layered visualisation
Evaluation		^		
Semantics	Complete	~		
The extension(s): () (B) (A) (C) The accepted argument(s): A B Click on the extension/argument corresponding argument(s) in the	buttons to display the a graph.	~	•	
Explanation		\sim		

Visualisation of abstract argumentation frameworks

Abstract Argumentation Framew	ork	\sim	Default visualisation	Layered visualisation
Evaluation		^		
Semantics Evaluation strategy The extension(s): 0 (B) 0 (B) 0 (B) 0 (B) 0 (C) 1 (B) C (C) Click on the extension/argument corresponding argument(s): A B C (C) Explanation	Complete Credulous buttons to display the e graph.	* *	6	

Computational Complexity

· Reasoning with AFs is generally hard

Problem	Grounded	Stable	Preferred	Complete
σ -Exist	Trivial	NP-c	Trivial	Trivial
σ -Exist ^{NT}	L	NP-c	NP-c	NP-c
σ -Verif	P-c	L	coNP-c	L
$\sigma ext{-Cred}$	P-c	NP-c	NP-c	NP-c
$\sigma ext{-Skep}$	P-c	coNP-c	Π_2^P -c	P-c

- σ -Exist: Given *F*, is $\sigma(F) \neq \emptyset$?
- σ-Exist^{NT}: Given F, is σ(F) ≠ Ø s.t. F has at least one non-empty extension?
- σ -Verif: Given F and S, is $S \in \sigma(F)$?
- σ -Cred: Given F and a, is $a \in cred_{\sigma}(F)$?
- σ -Skep: Given F and a, is $a \in skep_{\sigma}(F)$?

W. Dvorák, P. E.Dunne: Computational Problems in Formal Argumentation and their Complexity. Handbook of Formal Argumentation: 631–688 (2018) Approach proposed in (Besnard and Doutre 04). Intuition:

- Encoding arguments' acceptance in Boolean variables
- Define a formula such that each model corresponds to an extension

Approach proposed in (Besnard and Doutre 04). Intuition:

- Encoding arguments' acceptance in Boolean variables
- Define a formula such that each model corresponds to an extension

Logical Encoding of Stable Semantics

For $F = \langle A, R \rangle$, $S \subseteq A$ is a stable extension of F iff S is a model of

$$\phi_{st}(F) = \bigwedge_{a \in A} (a \leftrightarrow \bigwedge_{(b,a) \in R} \neg b)$$

Similar encodings exist for conflict-freeness, admissibility and the complete semantics.

P. Besnard, S. Doutre: Checking the acceptability of a set of arguments. NMR 2004: 59-64

- For $\sigma \in \{cf, ad, co, st\}, mod(\phi_{\sigma}(F)) = \sigma(F)$
 - Compute one/each extension = compute one/each model
 - Decide the credulous acceptability of a = check if $\phi_{\sigma}(F) \wedge a$ is SAT
 - Decide the skeptical acceptability of a = check if φ_σ(F) ∧ ¬a is UNSAT
- For σ = gr, computation is polynomial (can be done with unit propagation over φ_{co}(F))
- For $\sigma = pr$, need to use other techniques, e.g. CEGAR or MSS extraction

ICCMA and SAT-based Software

- Since 2015, the International Competition on Computational Models of Argumentation (ICCMA) evaluates the best solvers for argumentation problems
 - https://argumentationcompetition.org
 - Many available solvers
- μ -toskia: in C++
 - Winner of ICCMA 2019
 - https://bitbucket.org/andreasniskanen/mu-toksia/src/master/
- Crustabri: in Rust
 - Winner of several tracks at ICCMA 2023 (9 sub-tracks over 13 in the main track, and 3 sub-tracks over 3 in the dynamic track)
 - https://www.cril.univ-artois.fr/software/crustabri/
- pygarg : not an ICCMA solver, open-source Python implementation of the SAT-based algorithms from Crustabri
 - pip install pygarg
 - https://github.com/jgmailly/pygarg

Andreas Niskanen, Matti Järvisalo: μ -toksia: An Efficient Abstract Argumentation Reasoner. KR 2020: 800-804

J.-M. Lagniez, E. Lonca, J.-G. Mailly: A SAT-based Approach for Argumentation Dynamics. AAMAS 2024

J.-G. Mailly: pygarg: A Python engine for argumentation. Argument. Comput. 2024

If you like challenges, ICCMA 2025 will be announced soon (Sep. 17th, during SAFA 2024), and participation is open to everyone :)

http://safa2024.argumentationcompetition.org https://argumentationcompetition.org/2025/index.html

Using Pygarg (1)

• Remember: installation with pip install pygarg

Parsers for standard file formats are provided

```
import pygarg.dung.apx_parser
import pygarg.dung.dimacs_parser
```

args, atts = pygarg.dung.apx_parser.parse("test.apx")
args2, atts2 = pygarg.dung.dimacs_parser.parse("test.dimacs")

$$a_1 \longrightarrow a_2$$

p af 2 arg(a1). 1 2 arg(a2). att(a1,a2).

You can also declare the list of arguments and the list of attacks directly:

args3 = ["a1", "a2"] atts3 = [["a1", "a2"]]

Using Pygarg (2)

All interesting functions are in pygarg.dung.solver

- credulous_acceptability(args, atts, argname, sem)
- skeptical_acceptability(args, atts, argname, sem)
- compute_some_extension(args, atts, sem)
- extension_enumeration(args, atts, sem)
- extension_counting(args, atts, sem)

where sem is in ['CF', 'AD', 'ST', 'CO', 'PR', 'GR', 'ID', 'SST'] Example:

from pygarg.dung import solver as solver
from pygarg.dung import apx_parser as parser

```
args, atts = parser.parse("test.apx")
print(solver.extension_enumeration(args, atts, 'CO'))
```

```
prints [['a1']]
```

Two Aspects of Argumentation Dynamics

• Dynamic re-computation when an update occurs: when some arguments/attacks are added/deleted, can we re-compute the acceptability of arguments without running (naively) algorithms from scratch?

$$F = \langle A, R \rangle$$
Acceptability of $a \in A$
New argument x
and attacks R' from x
$$=$$

$$\Rightarrow \quad \text{Acceptability of } a \text{ in } F' = \langle A \cup \{x\}, R \cup R' \rangle$$

Two Aspects of Argumentation Dynamics

• Dynamic re-computation when an update occurs: when some arguments/attacks are added/deleted, can we re-compute the acceptability of arguments without running (naively) algorithms from scratch?

$$\left.\begin{array}{l}F = \langle A, R \rangle \\ \text{Acceptability of } a \in A \\ \text{New argument } x \\ \text{and attacks } R' \text{ from } x\end{array}\right\} \implies \text{Acceptability of } a \text{ in } F' = \langle A \cup \{x\}, R \cup R' \rangle \\ \end{array}$$

• Belief change/strategic aspect: How to change (minimally?) an AF in order to satisfy some property (e.g. regarding arguments acceptability)

$$\left. \begin{array}{c} F = \langle A, R \rangle \\ \text{Constraint} \end{array} \right\} \implies F' = \langle A', R' \rangle \text{ which satisfies the constraint}$$

Outline

Introduction to Abstract Argumentation

Dung's Framework

SAT-based Computation for Argumentation

What is Argumentation Dynamics?

Dynamic Computation

The Subgraph-based Approach

The Iterative SAT-based Approach

Extension Enforcement

How to modify arguments acceptability?

Argumentation under Uncertainty

Argumentation Dynamics under Uncertainty

Application to a Multi-Agent Scenario: Automated Negotiation

Conclusion
- When an AF is updated (addition/deletion of arguments/attacks), can we re-compute the acceptability of arguments without re-starting from scratch?
- Two approaches in the literature:
 - Identify the part of the graph which is impacted by the update, and re-compute only for this (smaller) part
 - Use incremental SAT solving to keep track of what the SAT solver has learnt in previous computation steps

$$F = \langle A, R \rangle$$

Acceptability of $a \in A$
New argument x
and attacks R' from x

 $\Rightarrow \quad \text{Acceptability of } a \text{ in } F' = \langle A \cup \{x\}, R \cup R' \rangle$

Input:

- AF $F_0 = \langle A_0, R_0 \rangle$
- Attack update $u = \star(a, b)$, $\star \in \{+, -\}$
- Semantics σ
- Extension E₀ ∈ σ(F₀)

Functions used:

- *I*(*u*, *A*₀, *E*₀) returns the set of arguments influenced by the update
- $R(U, A_0, E_0)$ returns the reduced AF
- solve_{σ}(*F*) returns a σ -extension of an AF *F* if it exists, \perp otherwise

 $S = I(u, A_0, E_0)$ if $S = \emptyset$ then return E_0 else $F_1 = R(u, A_0, E_0)$ $E_1 = solve_{\sigma}(F_1)$ if $E_1 \neq \bot$ then return $(E_0 \setminus S) \cup E_1$ else return solve_{σ}($u(A_0)$) end if end if

Gianvincenzo Alfano, Sergio Greco, Francesco Parisi: Efficient Computation of Extensions for Dynamic Abstract

Argumentation Frameworks: An Incremental Approach. IJCAI 2017: 49-55

• $F_0 = \langle A, R \rangle, \ \sigma = st,$ $E_0 = \{a_1, a_3, a_4, a_6\}$

- $F_0 = \langle A, R \rangle$, $\sigma = st$, $E_0 = \{a_1, a_3, a_4, a_6\}$
- $u = +(a_1, a_2)$

- $F_0 = \langle A, R \rangle$, $\sigma = st$, $E_0 = \{a_1, a_3, a_4, a_6\}$
- $u = +(a_1, a_2)$
- Influenced set $I(u, A_0, E_0) = \{a_1, a_2\}$

- $F_0 = \langle A, R \rangle$, $\sigma = st$, $E_0 = \{a_1, a_3, a_4, a_6\}$
- $u = +(a_1, a_2)$
- Influenced set $I(u, A_0, E_0) = \{a_1, a_2\}$
- Re-computation is localized to a smaller graph $R(U, A_0, E_0)$

The Subgraph-based Approach: Other Work

- In structured argumentation: Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, Gerardo Ignacio Simari, Guillermo Ricardo Simari: An Incremental Approach to Structured Argumentation over Dynamic Knowledge Bases. KR 2018: 78-87
- In bipolar AFs: Gianvincenzo Alfano, Sergio Greco, Francesco Parisi: A meta-argumentation approach for the efficient computation of stable and preferred extensions in dynamic bipolar argumentation frameworks. Intelligenza Artificiale 12(2): 193-211 (2018)
- For arguments skeptical acceptability: Gianvincenzo Alfano, Sergio Greco, Francesco Parisi: An Efficient Algorithm for Skeptical Preferred Acceptance in Dynamic Argumentation Frameworks. IJCAI 2019: 18-24
- In higher-order bipolar AFs: Gianvincenzo Alfano, Andrea Cohen, Sebastian Gottifredi, Sergio Greco, Francesco Parisi, Guillermo Ricardo Simari: Credulous acceptance in high-order argumentation frameworks with necessities: An incremental approach. Artif. Intell. 333: 104159 (2024)

Incremental SAT-based Computation

- Incremental SAT-based approach implemented in Crustabri, won all sub-tracks of the dynamic track at ICCMA 2023
- Idea: use the assumption mechanism of SAT solvers over variables representing the disjunction of attackers. Allows to easily update the set of attacks and the set of arguments

- Red: Crustabri approach
- Green: re-computation from scratch
- Blue: various versions of μ-toksia approach

• Future work: combine our approach with "subgraph-based" approach

Outline

Introduction to Abstract Argumentation

Dung's Framework

SAT-based Computation for Argumentation

What is Argumentation Dynamics?

Dynamic Computation

The Subgraph-based Approach

The Iterative SAT-based Approach

Extension Enforcement

How to modify arguments acceptability?

Argumentation under Uncertainty

Argumentation Dynamics under Uncertainty

Application to a Multi-Agent Scenario: Automated Negotiation Conclusion

Extension Enforcement: Intuition

$$\left.\begin{array}{c}F = \langle A, R \rangle \\ E \subseteq A \\ \text{should be (part of)} \\ \text{an extension}\end{array}\right\} \implies \begin{array}{c}F' = \langle A', R' \rangle \text{ with } E \\ (part of) \text{ an extension}\end{array}$$

Different approaches

- (Baumann and Brewka) No change of the existing attacks, new arguments and attacks can be added
- (Coste-Marquis et al) The existing attacks can be modified
- (Doutre and Mailly) The semantics can be modified

R. Baumann, G. Brewka: Expanding Argumentation Frameworks: Enforcing and Monotonicity Results. COMMA 2010: 75-86

S. Coste-Marquis, S. Konieczny, <u>J.-G. Mailly</u>, P. Marquis: Extension Enforcement in Abstract Argumentation as an Optimization Problem. IJCAI 2015: 2876-2882

S. Doutre, J.-G. Mailly: Semantic Change and Extension Enforcement in Abstract Argumentation. SUM 2017: 194-207

R. Baumann, G. Brewka: Expanding Argumentation Frameworks: Enforcing and Monotonicity Results. COMMA 2010: 75-86

• How to enforce $E = \{a_2, a_3\}$ in F?

- R. Baumann, G. Brewka: Expanding Argumentation Frameworks: Enforcing and Monotonicity Results. COMMA 2010: 75-86
 - How to enforce $E = \{a_2, a_3\}$ in F?

S. Coste-Marquis, S. Konieczny, J.-G. Mailly, P. Marquis: Extension Enforcement in Abstract Argumentation as an Optimization Problem. IJCAI 2015: 2876-2882

• How to enforce $E = \{a_2, a_3\}$ in F?

S. Coste-Marquis, S. Konieczny, J.-G. Mailly, P. Marquis: Extension Enforcement in Abstract Argumentation as an Optimization Problem. IJCAI 2015: 2876-2882

• How to enforce $E = \{a_2, a_3\}$ in F?

Two extensions:

- Example: stable semantics
- Idea: generalize the propositional encoding to take into account the attack relation

$$\phi_{st}(F) = \bigwedge_{a \in A} (a \leftrightarrow \bigwedge_{(b,a) \in R} \neg b) \qquad \qquad \phi'_{st}(A) = \bigwedge_{a \in A} (acc_a \leftrightarrow \bigwedge_{b \in A} (att_{b,a} \rightarrow \neg acc_b))$$

S. Coste-Marquis, S. Konieczny, J.-G. Mailly, P. Marquis: Extension Enforcement in Abstract Argumentation as an Optimization Problem. IJCAI 2015: 2876-2882

- Example: stable semantics
- Idea: generalize the propositional encoding to take into account the attack relation

$$\phi_{st}(F) = \bigwedge_{a \in A} (a \leftrightarrow \bigwedge_{(b,a) \in R} \neg b) \qquad \qquad \phi'_{st}(A) = \bigwedge_{a \in A} (acc_a \leftrightarrow \bigwedge_{b \in A} (att_{b,a} \rightarrow \neg acc_b))$$

If F = ⟨A, R⟩ is known, φ'_{st}(A) ∧ ∧_{(a,b)∈R} att_{a,b} ∧ ∧_{(a,b)∉R} ¬att_{a,b} corresponds to φ_{st}(F)

S. Coste-Marquis, S. Konieczny, <u>J.-G. Mailly</u>, P. Marquis: Extension Enforcement in Abstract Argumentation as an Optimization Problem. IJCAI 2015: 2876-2882

- Example: stable semantics
- Idea: generalize the propositional encoding to take into account the attack relation

$$\phi_{st}(F) = \bigwedge_{a \in A} (a \leftrightarrow \bigwedge_{(b,a) \in R} \neg b) \qquad \qquad \phi'_{st}(A) = \bigwedge_{a \in A} (acc_a \leftrightarrow \bigwedge_{b \in A} (att_{b,a} \rightarrow \neg acc_b))$$

- If F = ⟨A, R⟩ is known, φ'_{st}(A) ∧ ∧_{(a,b)∈R} att_{a,b} ∧ ∧_{(a,b)∉R} ¬att_{a,b} corresponds to φ_{st}(F)
- To enforce, E ⊆ A, search a model of φ'_{st}(A) ∧ ∧_{a∈E} acc_a ∧ ∧_{a∉E} ¬acc_a: the values of the att_{a,b} variables correspond to an AF

S. Coste-Marquis, S. Konieczny, <u>J.-G. Mailly</u>, P. Marquis: Extension Enforcement in Abstract Argumentation as an Optimization Problem. IJCAI 2015: 2876-2882

Minimal Enforcement as PB and MaxSAT

$$\left.\begin{array}{c} F = \langle A, R \rangle \\ E \subseteq A \\ \text{should be (part of)} \\ \text{an extension} \end{array}\right\}$$

 $F' = \langle A', R' \rangle$ with E \implies (part of) an extension and F' as close as possible to F

Minimal Enforcement as PB and MaxSAT

 (Coste-Marquis et al) translate the SAT encoding in pseudo-Boolean constraints, optimize w.r.t. an objective function (distance between F and F')

S. Coste-Marquis, S. Konieczny, J.-G. Mailly, P. Marquis: Extension Enforcement in Abstract Argumentation as an Optimization Problem. IJCAI 2015: 2876-2882

Minimal Enforcement as PB and MaxSAT

- (Coste-Marquis et al) translate the SAT encoding in pseudo-Boolean constraints, optimize w.r.t. an objective function (distance between F and F')
- (Wallner et al) translate into partial MaxSAT: the SAT encoding of enforcement corresponds to hard clauses, and unit clauses corresponding to the *att_{a,b}* variables correspond to the soft clauses. CEGAR algorithm for second level of the polynomial hierarchy
 - Available software:

https://bitbucket.org/andreasniskanen/pakota/src/master/

 Scalability: up to 350 arguments for NP-complete problems, 200 arguments for Σ₂^P-complete problems (≃ 10 seconds for most instances)

S. Coste-Marquis, S. Konieczny, J.-G. Mailly, P. Marquis: Extension Enforcement in Abstract Argumentation as an Optimization Problem. IJCAI 2015: 2876-2882

J. P. Wallner, A. Niskanen, M. Järvisalo: Complexity Results and Algorithms for Extension Enforcement in Abstract Argumentation. J. Artif. Intell. Res. 60: 1-40 (2017)

Related Work

More information about enforcement and related topics:

- Status enforcement: A. Niskanen, J. P. Wallner, M. Järvisalo: Optimal Status Enforcement in Abstract Argumentation. IJCAI 2016: 1216-1222
- Belief change in argumentation:
 - S. Coste-Marquis, S. Konieczny, <u>J.-G. Mailly</u>, P. Marquis: On the Revision of Argumentation Systems: Minimal Change of Arguments Statuses. KR 2014
 - S. Coste-Marquis, S. Konieczny, J.-G. Mailly, P. Marquis: A Translation-Based Approach for Revision of Argumentation Frameworks. JELIA 2014: 397-411
 - M. Diller, A. Haret, T. Linsbichler, S. Rümmele, S. Woltran: An extension-based approach to belief revision in abstract argumentation. Int. J. Approx. Reason. 93: 395-423 (2018)
 - S. Doutre, A. Herzig, L. Perrussel: A Dynamic Logic Framework for Abstract Argumentation. KR 2014

Two survey papers

- S. Doutre, J.-G. Mailly: Constraints and changes: A survey of abstract argumentation dynamics. Argument Comput. 9(3): 223-248 (2018)
- R. Baumann, S. Doutre, <u>J.-G. Mailly</u>, J. P. Wallner, Enforcement in Formal Argumentation, in Handbook of Formal Argumentation (Vol.2) (2021)

 $I = \langle A, A^?, R, R^? \rangle$ where

- A, A? are disjoint sets of arguments
- $R, R^?$ are disjoint sets of attacks over $A \cup A^?$

such that

- A, R are certain arguments and attacks
- $A^{?}, R^{?}$ are uncertain arguments and attacks

J.-G. Mailly: Yes, no, maybe, I don't know: Complexity and application of abstract argumentation with incomplete knowledge. Argument Comput. 13(3): 291-324 (2022)

Completions = AFs compatible with the incomplete knowledge encoded in the IAF \simeq possible worlds

- Possible reasoning: some property is true for some completion of the IAF
- Necessary reasoning: some property is true for each completion of the IAF

- Possible reasoning: some property is true for some completion of the IAF
- Necessary reasoning: some property is true for each completion of the IAF

• a_3 is skeptically accepted in each completion \rightarrow necessarily skeptically accepted

- Possible reasoning: some property is true for some completion of the IAF
- Necessary reasoning: some property is true for each completion of the IAF

- a_3 is skeptically accepted in each completion \rightarrow necessarily skeptically accepted
- a_4 is skeptically accepted in some completion \rightarrow possibly skeptically accepted

- Possible reasoning: some property is true for some completion of the IAF
- Necessary reasoning: some property is true for each completion of the IAF

- a_3 is skeptically accepted in each completion \rightarrow necessarily skeptically accepted
- a_4 is skeptically accepted in some completion \rightarrow possibly skeptically accepted
- a_2 is credulously accepted in some completion \rightarrow possibly credulously accepted

- Possible reasoning: some property is true for some completion of the IAF
- Necessary reasoning: some property is true for each completion of the IAF

- a_3 is skeptically accepted in each completion \rightarrow necessarily skeptically accepted
- a_4 is skeptically accepted in some completion \rightarrow possibly skeptically accepted
- a_2 is credulously accepted in some completion \rightarrow possibly credulously accepted
- a_1 is credulously accepted in each completion \rightarrow necessarily credulously accepted

Complexity of Reasoning with IAFs

- Possible Credulous Acceptability: *a* is in some extension of some completion
- Possible Skeptical Acceptability: a is in each extension of some completion
- Possible Verification: S is an extension of some completion
- Necessary Credulous Acceptability: *a* is in some extension of each completion
- Necessary Skeptical Acceptability: *a* is in each extension of each completion
- Necessary Verification: S is an extension of each completion

Semantics	PCA	PSA	PV	NCA	NSA	NV
ad	NP-c	trivial	NP-c	П ₂ ^P -с	trivial	Р
st	NP-c	Σ_2^P -c	NP-c	$\Pi_2^{\overline{P}}$ -c	coNP-c	Р
со	NP-c	NP-c	NP-c	$\Pi_2^{\overline{P}}$ -c	coNP-c	Р
gr	NP-c	NP-c	NP-c	coNP-c	coNP-c	Р
pr	NP-c	Σ_3^P -c	Σ_2^P -c	П ₂ ^P -с	П ₂ ^P -с	coNP-c

SAT-based algorithms, CEGAR for second/third level of PH

A CAF is an argumentation framework where arguments are divided in three parts: *fixed*, *uncertain* and *control*.

fixed background knowledge about a static environment uncertain changes that may occur in the environment control possible actions of the agent

CAFs generalize IAFs in two directions:

- a new kind of uncertainty about the direction of attacks
- the control part representing how the agent can react to uncertain "threats"

Y. Dimopoulos, J.-G. Mailly, P. Moraitis: Control Argumentation Frameworks. AAAI 2018: 4678-4685

- Fixed part: circle arguments + plain arrows
- Uncertain part:
 - dashed arguments
 - dotted arrows
 - two-heads dashed arrows
- Control part: square arguments + bold arrows

• certain knowledge: always exist

- Fixed part: circle arguments + plain arrows
- Uncertain part:
 - dashed arguments
 - dotted arrows
 - two-heads dashed arrows
- Control part: square arguments + bold arrows

• the argument could exist, or not

- Fixed part: circle arguments + plain arrows
- Uncertain part:
 - dashed arguments
 - dotted arrows
 - two-heads dashed arrows
- Control part: square arguments + bold arrows

• the attack could exist, or not

- Fixed part: circle arguments + plain arrows
- Uncertain part:
 - dashed arguments
 - dotted arrows
 - two-heads dashed arrows
- Control part: square arguments + bold arrows

- Fixed part: circle arguments + plain arrows
- Uncertain part:
 - dashed arguments
 - dotted arrows
 - two-heads dashed arrows
- Control part: square arguments + bold arrows

• the attack exists (if both arguments exist), but we are not sure of the direction

- Fixed part: circle arguments + plain arrows
- Uncertain part:
 - dashed arguments
 - dotted arrows
 - two-heads dashed arrows
- Control part: square arguments + bold arrows

• exist only if the agent selects the arguments
• Generalizes the notion of completion from IAFs, with 3 possible options for each "unknown direction conflict"

(a1) ← - -> (a2) (a3) · · · · · > (a4)

Completion

 Generalizes the notion of completion from IAFs, with 3 possible options for each "unknown direction conflict"

- A control configuration is a subset $cc \subseteq A_C$
- A configured CAF: remove from the initial CAF the arguments A_C \ cc (and their attacks)

Example: In the CAF configured by $cc = \{a_8\}$, $T = \{a_1\}$ is accepted whatever the completion

Formal Definition of Controllability

Given

- a target $T \subseteq A_F$
- a semantics σ

CAF is skeptically (resp. credulously) *controllable* w.r.t. T and σ if $\exists cc \subseteq A_C$ s.t.

- CAF' is the result of configuring CAF by cc
- T is included in every (resp. some) σ -extension of every completion of CAF'

Y. Dimopoulos, J.-G. Mailly, P. Moraitis: Control Argumentation Frameworks. AAAI 2018: 4678-4685

Formal Definition of Controllability

Given

- a target $T \subseteq A_F$
- a semantics σ

CAF is skeptically (resp. credulously) *controllable* w.r.t. T and σ if $\exists cc \subseteq A_C$ s.t.

- CAF' is the result of configuring CAF by cc
- *T* is included in every (resp. some) *σ*-extension of every completion of CAF'

Y. Dimopoulos, J.-G. Mailly, P. Moraitis: Control Argumentation Frameworks. AAAI 2018: 4678-4685

• Possible controllability: replace "every completion" by "some completion"

J.-G. Mailly: Possible Controllability of Control Argumentation Frameworks. COMMA 2020: 283-294

Complexity and Computation

	Possible		Necessary	
	Skeptical	Credulous	Skeptical	Credulous
Grounded	NP-c	NP-c	Σ ₂ ^P -c	Σ ₂ ^P -c
Complete	NP-c	NP-c	Σ_2^P -c	Σ_3^P -c
Stable	Σ_2^P -c	NP-c	Σ ₂ ^P -c	Σ_3^P -c
Preferred	Σ_3^P -c	NP-c	Σ ₃ ^P -c	Σ_3^P -c

- QBF encodings proposed in (Dimopoulos et al, Mailly)
- CEGAR algorithms proposed in (Niskanen et al)
- Y. Dimopoulos, J.-G. Mailly, P. Moraitis: Control Argumentation Frameworks. AAAI 2018: 4678-4685

J.-G. Mailly: Possible Controllability of Control Argumentation Frameworks. COMMA 2020: 283-294

A. Niskanen, D. Neugebauer, M. Järvisalo: Controllability of Control Argumentation Frameworks. IJCAI 2020: 1855-1861

Outline

Introduction to Abstract Argumentation

Dung's Framework

SAT-based Computation for Argumentation

What is Argumentation Dynamics?

Dynamic Computation

The Subgraph-based Approach

The Iterative SAT-based Approach

Extension Enforcement

How to modify arguments acceptability?

Argumentation under Uncertainty

Argumentation Dynamics under Uncertainty

Application to a Multi-Agent Scenario: Automated Negotiation

Conclusion

- Context: several agents have their own knowledge/beliefs, preferences and goals
- Objective: reach an agreement between them (*e.g.* about an action to perform, a product to buy, some allocation of resources/tasks, etc)
- Example:
 - The car sellers knows the different cars and their features, and wants to sell the most expensive one
 - The potential buyer knows his needs (small car, family car, big trunk,...) and preferences (color of the car, heating seats,...), and wants to buy a car that meets these needs, as cheap as possible

- Argumentation: activity that aims at increasing (or decreasing) the acceptance degree of a controversial point of view
- Arguments: pieces of information that justify (or defeat) a point of view
- Using argumentation in negotiation improves the chances to reach an agreement (Sycara 1990)
 - An offer supported by a good argument is more likely to be accepted
 - An agent can modify its goals and preferences when he receives arguments

K. Sycara: Persuasive argumentation in negotiation. Theory and Decision 28(3):203-242, 1990.

- If available, opponent modeling is a great tool to improve the issue of negotiation
 - possibility to choose offers/arguments that the opponent is likely to accept
 - anticipate what he will say
 - use his own arguments to convince him
- CAFs are a good way to model the knowledge of an agent about the other agent
 - · Fixed part: certain knowledge about the opponent
 - Uncertain part: uncertain knowledge about the opponent
 - Control part: possible actions of the agent to convince the opponent

Y. Dimopoulos, J.-G. Mailly, Pavlos Moraitis: Arguing and negotiating using incomplete negotiators profiles. Auton. Agents Multi Agent Syst. 35(2): 18 (2021)

- No fixed role: both agent act as proponent and opponent in turn
- Each agent has a (incomplete and uncertain) representation of its opponent's theory: fixed and uncertain part of the CAF
- In the CAF, control arguments come from the agent's own theory: persuasive arguments
- The proponent selects the best offer w.r.t. his own theory, but uses arguments from the opponent's theory to defend the offer \to facilitates persuasion

Y. Dimopoulos, J.-G. Mailly, Pavlos Moraitis: Arguing and negotiating using incomplete negotiators profiles. Auton. Agents Multi Agent Syst. 35(2): 18 (2021) Negotiation theory of an agent $\alpha : \ \mathcal{T} = \langle \mathcal{O}, \mathcal{T}^{\alpha}, \mathcal{C}^{\alpha,\beta}, \mathcal{F}^{\alpha} \rangle$ with

- $\mathcal{O}:$ set of offers
 - Can be "simple" objects (mono-issue negotiation): { car₁, car₂,..., car_n}
 - Or "complex" objects (multi-issue negotiation): {(car₁, price₁, delivery₁),..., (car_n, price_m, delivery_k)}
- \mathcal{T}^{α} : the agent's AF
- $\mathcal{C}^{\alpha,\beta}$: the knowledge of α about his opponent β
 - $C^{\alpha,\beta}$ is made from \mathcal{T}^{β} : there is uncertainty, there is ignorance, but there is no mistake or lie
- $\mathcal{F}^{\alpha}:\mathcal{O}\to 2^{A_{p}{}^{\alpha}}$ maps offers to the set of practical arguments supporting them

(к

 $\alpha '{\rm s}$ turn: X is not accepted in ${\cal T}^\alpha,$ so α cannot support the (unique) offer O \to the token goes to β

 β 's turn: best offer according to β 's personnal AF is O because the supporting argument Y is accepted in \mathcal{T}^β

 $\beta \text{'s turn: support argument for } O \text{ in } \alpha \text{'s theory is } X$

β 's Proposal without Control

• X is not accepted in each completion (e.g. Completion 1)

• X is accepted in each completion

 β 's turn: proposal is offer O, supported by argument X, defended by D and F

 α updates its CAF: uncertainty decreases

 α updates its own theory. X is now accepted: agreement

- If both agents end with no available offer, then the negotiation fails
- Otherwise, the outcome of the negotiation is the proponent's offer from the last round of the dialogue
- Experiments have shown the interest of using CAFs: better agreement rate if agents have enough information on their opponent and enough control arguments

Outline

Introduction to Abstract Argumentation

Dung's Framework

SAT-based Computation for Argumentation

What is Argumentation Dynamics?

Dynamic Computation

The Subgraph-based Approach

The Iterative SAT-based Approach

Extension Enforcement

How to modify arguments acceptability?

Argumentation under Uncertainty

Argumentation Dynamics under Uncertainty

Application to a Multi-Agent Scenario: Automated Negotiation

Conclusion

Conclusion

Summary

- Argument-based reasoning is computationally hard, but can be solved thanks to SAT-based techniques and various algorithmic tricks (*e.g.* subgraph selection in dynamic argumentation)
- Argumentation under uncertainty/in dynamics scenarios has theoretical interest, and practical interest (e.g. automated negotiation)

Future work

- Multi-issue negotiation: how can agent make concessions?
 - Work in progress with a PhD student
- Richer frameworks (supports, collective attacks, weighted, higher order relations, etc)
- Other kinds of semantics (ranking, gradual)
- Real world applications (e.g. online dispute resolution)

Conclusion

Summary

- Argument-based reasoning is computationally hard, but can be solved thanks to SAT-based techniques and various algorithmic tricks (*e.g.* subgraph selection in dynamic argumentation)
- Argumentation under uncertainty/in dynamics scenarios has theoretical interest, and practical interest (e.g. automated negotiation)

Future work

- Multi-issue negotiation: how can agent make concessions?
 - Work in progress with a PhD student
- Richer frameworks (supports, collective attacks, weighted, higher order relations, etc)
- Other kinds of semantics (ranking, gradual)
- Real world applications (e.g. online dispute resolution)

Thanks for your attention!